

Economics of Preventing Respiratory Syncytial Virus Lower Respiratory Tract Infections (RSV-LRTI) among US Infants with Nirsevimab

A SUMMARY REPORT COMPARING MODELS FROM:

Sanofi AND *University of Michigan and CDC*

Ismael R. Ortega-Sanchez, PhD
NCIRD/CDC

ACIP Meeting, February 23, 2023

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Conflict of interest

- Sanofi model: Alexia Kieffer et al., [complete authors list and affiliations, upon request]
 - Sanofi manufactures nirsevimab
 - Evidera (San Francisco, London) was funded by Sanofi

- UM-CDC model: David W Hutton et al. from Univ Michigan, ...,
 Ismael R Ortega-Sanchez et al. from CDC [complete authors list and
 affiliations, upon request]
 - All authors: No conflicts of interest

Overview

Policy questions:

- Should one dose of nirsevimab be recommended
 - a) at birth for all infants born during October to March and
 - b) for all infants born during April through September and <8 months of age when entering first RSV season?

 Should nirsevimab be recommended for children <20 months of age entering their second RSV season who remain at increased risk of severe disease?

Economic analysis

Question: Is the use of nirsevimab against RSV LRTI in all infants <8 months entering their first RSV season or born during season (and in high-risk children <20 months entering the 2nd season) *cost-effective*?

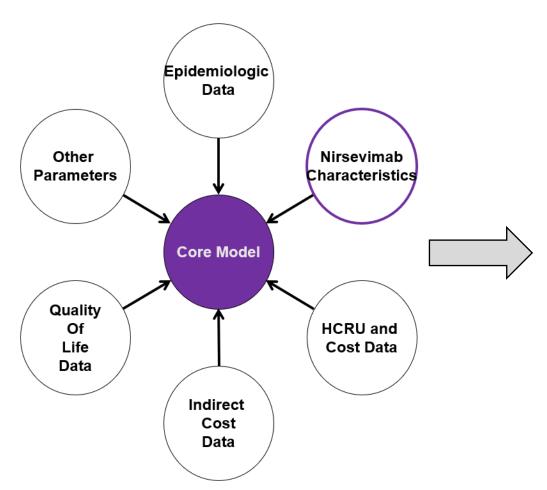
Comparator

Standard of care (SoC)
Infants in first season
(and high-risk in 2nd
season)

Intervention

Giving nirsevimab to infants in first season (and high-risk in 2nd season)

Base-case scenario: What is the incremental *cost-effectiveness* of using nirsevimab in all infants <8 months entering their first RSV season or born during season (and in high-risk children <20 months entering second season) relative to "Standard of Care"?


Focus on key features for model comparison

- Modeling approach
 - Targeted population(s)
 - Perspective (healthcare vs. societal)
 - Intervention strategies and comparators
- Inputs for RSV disease burden, nirsevimab efficacy, and costs
 - Incidence of RSV disease, rates of outcomes
 - Direct and indirect costs of RSV disease
 - Intervention: efficacy, duration of protection, safety and program costs
- Assumptions
 - Strong, influential assumptions

Modeling design and assumptions

	Sanofi	UM-CDC
Static analytical decision-making models	✓	√
Sensitivity analyses (and probabilistic simulation)	√(√)	√
Hypothetical population: All infants < 8 months (high risk children 8-19 months)	√(√)	√(√)
Time Frame: First year after a dose of nirsevimab (2 nd season, 2nd dose for high-risk 8-19 months only)	√ (√)	√ (√)
Analytic Horizon: two years or seasons (for temporary disability) and Life Expectancy (for premature mortality)	√ ✓	√ ✓
Discount rate: 3%	✓	✓
Year of economic outcomes measured: 2022	✓	✓
Societal perspective (and healthcare perspective)	√(√)	√(√)

Inputs and main outcomes

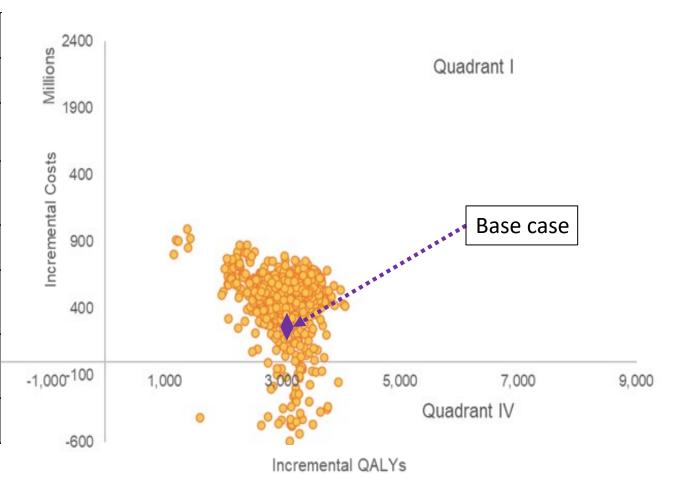
Prevention of:

- MA RSV LRTI
- RSV LRTI hospitalizations
- RSV-associated deaths

Sanofi	UM-CDC
✓	✓
√	✓
✓	✓

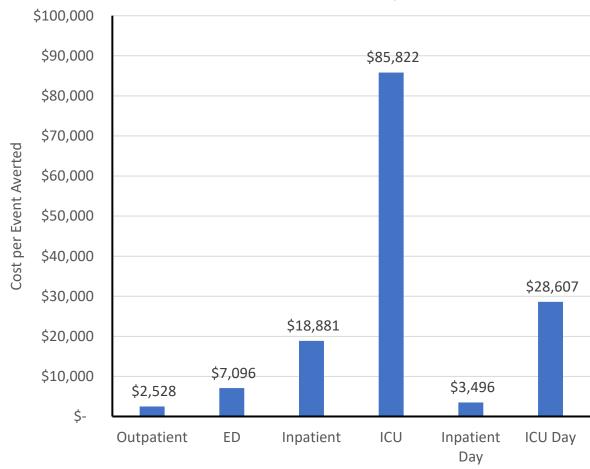
QALYs saved \$/QALY saved

✓	✓
✓	✓


Number needed to immunize (NNI) to avert an:

- MA RSV LRTI
- RSV LRTI hospitalization
- RSV-associated death

✓	√
\	✓
√	✓

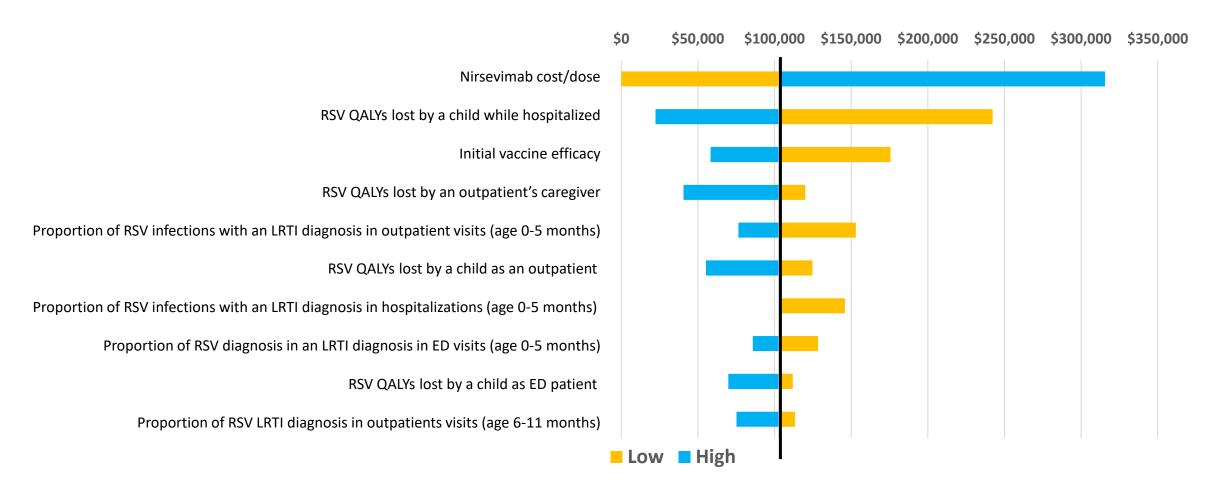

Sanofi model: Base case estimates for all infants <7 months in Season 1, nirsevimab cost \$500/dose & PSA

Summary outcomes	Base-Case
\$/QALY gained	\$70,430
\$/RSV MA LRTI case averted	\$798
\$/RSV-associated LRTI	
hospitalization averted	\$9,387
\$/RSV-assoc. death averted	>\$5.6Million
NNI to avert an RSV-MA LRTI	
case	5
NNI to avert an RSV-	
associated LRTI hospitalization	43
NNI to avert a death	55,957

UM-CDC: Base case estimates for all infants <8 months, Season 1, nirsevimab cost \$300/dose

Summary outcomes	Base-Case
\$/QALY gained	\$102,805
\$/RSV-MA LRTI case averted	\$2,100
\$/RSV-associated	
LRTI hospitalization averted	\$18,881
\$/RSV-assoc. death averted	n/r
NNI avert an RSV-MA LRTI	
case	14
NNI avert an RSV-assoc. LRTI	
hospitalization	130
NNI avert an RSV-assoc. death	n/r

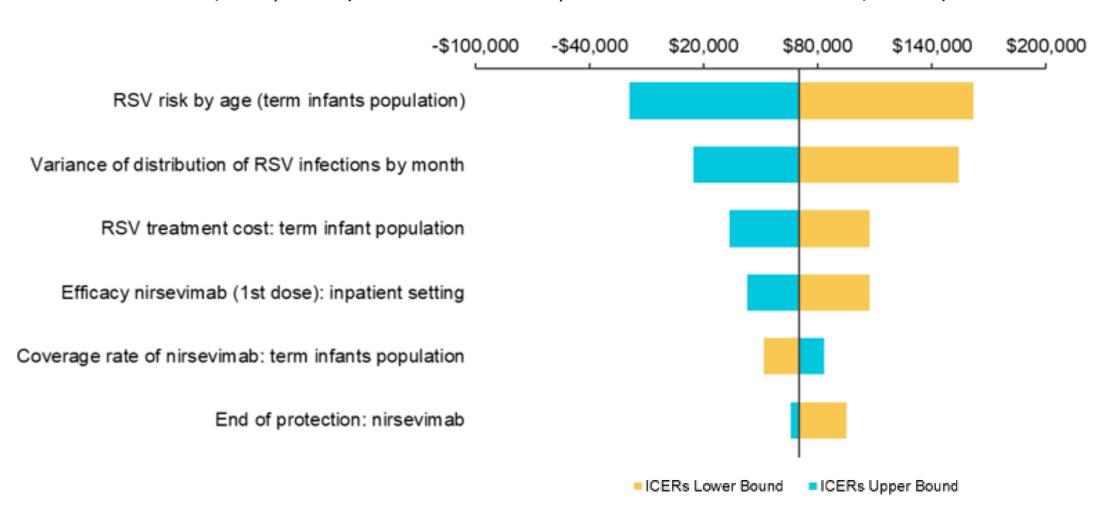
Sanofi and UM-CDC models comparison: Selected outcome ratios for nirsevimab


	UM-CDC model Price per dose \$300	Sanofi model Price per dose \$500
\$ / QALY gained		
nirsevimab Season 1, infants	\$102,805	\$70,430
nirsevimab Season 2, high risk infants	\$842,139 ^b	\$823,131ª
nirsevimab Seasons 1 & 2 combined	n/r	\$62,589
nirsevimab vs palivizumab, Season 2 PEP ^c	n/r	dominant
\$ / hospitalization averted		
nirsevimab Season 1	\$18,881	\$9,387
nirsevimab Seasons 1 & 2 combined	n/r	\$8,316

a. Pre-term infants only

b. High risk <19 months old infants (preterm + PEP) receiving a 2nd dose of nirsevimab in October

c. PEP= palivizumab eligible population


UM-CDC model: One-way Sensitivity Analyses (Season 1 only) Base case: \$102,805/QALY saved, nirsevimab cost \$300/dose

Assuming 100% uptake in nirsevimab group

11

Sanofi model: One-way Sensitivity Analyses (Season 1 only) Base case: \$70,430/QALY saved, nirsevimab cost \$500/dose

Sanofi and UM-CDC models comparison: Selected influential inputs

• RSV-hospitalization rate

Sanofi: Age and term-specific hospitalization rates reported in McLaurin (2016)^a UM-CDC: From RSV-associated hospitalization rates^b among children aged ≤2 years

Unitary medical cost of RSV hospitalization

Sanofi: Cost varies by term at birth and by whether Intensive Care Unit or Mechanical Ventilator were needed as reported in McLaurin (2016)^b

UM-CDC: Unit cost was a weighted average by term at birth and age as reported in Bowser (2022)^c

RSV season & intervention period

Sanofi: MA RSV season based on Rainisch (2020)^d but intervention ends in February UM-CDC: RSV-season and intervention period based on CDC surveillance data (2016-2019)^c

Initial efficacy & waning

Sanofi: Constant first 5 months as in trials, linear decay from month 6 to month 10 UM-CDC: Sigmoid decay up to 10 months; average residual protection in first 5 months equals constant efficacy from trials

a McLaurin et al. *J Perinatol*. 2016;36(11):990-996

b CDC unpublished data from the New Vaccine Surveillance Network (NVSN) (December 2016 to September 2020)

c Bowser et al., J Infect Dis. 2022 Aug 15; 226(Suppl 2): S225–S235

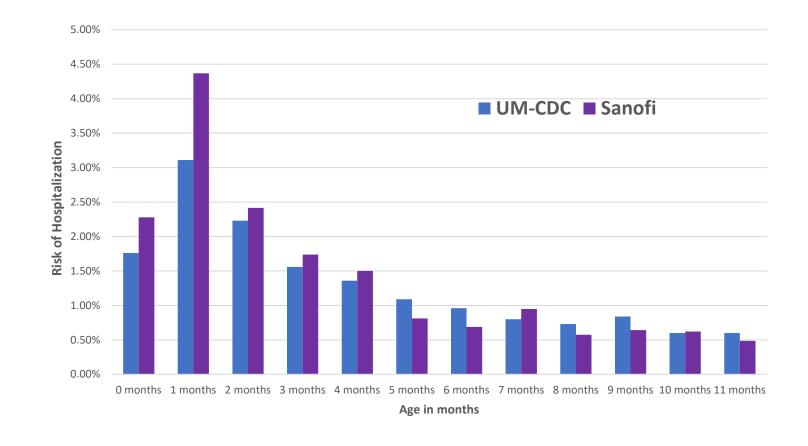
d Rainisch et al. Vaccine. 2020;38(2):251-257

Sanofi and UM-CDC models comparison: Differences in key inputs

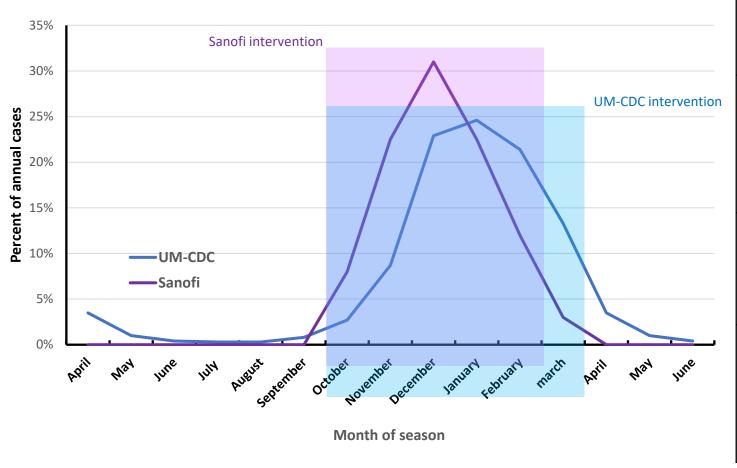
	UM-CDC	Sanofi
Risk of RSV hospitalization (Infants <12 months of age)	1.30% (0.60% - 3.11%) ^a	1.42% (0.49% - 4.37%) ^b
Medical costs per RSV hospitalization	\$11,487 (\$11,042 - \$11,993) ^c	\$18,790 – \$28,812 (age- and term dependent) ^d
Medical costs per RSV outpatient visit	\$82 (\$46 - \$118) ^c	\$153 (no variation reported)

a Data from CDC-funded New Vaccine Surveillance Network (NVSN) (December 2016 to September 2020) (range values are the lowest and highest within the first 11 months of age)

b Weighted average term-specific populations shares (range values are the lowest and highest within the first 11 months of age)


c Adapted from Bowser et al., J Infect Dis. 2022 Aug 15; 226(Suppl 2): S225–S235 (A systematic review study funded by Sanofi)

d Costs in the base-case varied by age, term at birth and by whether Intensive Care Unit or Mechanical Ventilator were needed while hospitalized using percentages as wights; data reported in McLaurin (2016)


Sanofi and UM-CDC models comparison: Base-case risk of RSV-related hospitalization by age

UM-CDC model: Laboratoryconfirmed RSV-associated hospitalization rates from New Vaccine Surveillance Network (NVSN) data for children under 2 years of age (December 2016 to September 2020)

Sanofi model: Age and termspecific weighted average of hospitalization rates in infants using reported rates in McLaurin (2016)

Sanofi and UM-CDC models comparison: RSV-season and intervention*

Sanofi	UM-CDC
Intervention	Intervention
WiS (Within RSV season). All Infants born in-season (i.e., October 1 st to Feb 29 th)	At birth, if born October 1 st to March 31 st
WiS: All infants 0-3	In October, if born in
months of age at the	April
start of RSV season	June
(i.e., in October)	August
OoS (Out of RSV season): All infants born OoS at the start of the RSV season (i.e., in October)	In November, if born in May July September

^{*} RSV-season and Intervention period in UM-CDC model are based on NREVVS seasonality (2016-2019).
Intervention period in Sanofi model ends in February (a month short from end of MA RSV season, Rainisch et al., Vaccine. 2020;38(2):251-257. Technical appendix)

Sanofi and UM-CDC: Initial nirsevimab efficacy and uptake

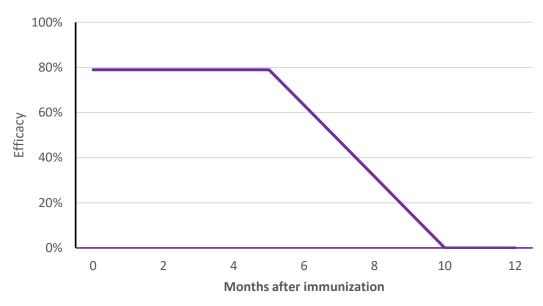
	UM-CDC	Sanofi
Initial efficacy against MA RSV LRTI: Inpatient and outpatient (%) ^a	80.0 (68.5 – 86.1) ^a	79.0 (68.5 – 86.1) ^{a, b}

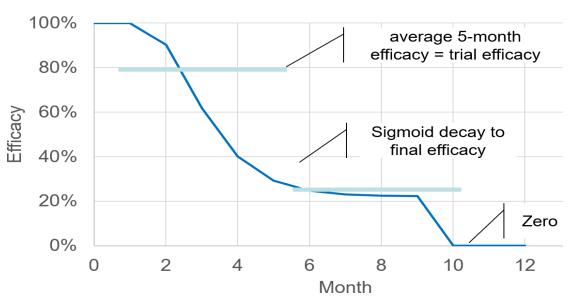
a MELODY trial and Phase 2b recommended dose

b Assumed non-inferiority with palivizumab, Hammitt et al., N Engl J Med. 2022;386(9):837-846

Sanofi and UM-CDC: Assumption on duration of nirsevimab

Sanof


Initial efficacy against MA LRTI = A constant protection over 5 months,


Then, a linear decay of efficacy from month 6 to month 10

No residual protection after 10 months

UM-CDC

Initial efficacy against LRTI = Average 5 months efficacy equals to trial estimates
Sigmoid decay up to 10 months and then 0% afterwards;
Calibrated such that the first 5 months efficacy equals trial estimates

UM-CDC model: comparison of base case & selected scenarios

Scenario	UM-CDC
Nirsevimab cost per \$500/dose (1st season)c	\$244,677
Intervention period October to February	\$107,963
Base case ^a (Nirsevimab cost \$300/dose, 1 st season)	\$102,805
Prevention of All MA RSV visits (LRTI and URTI) ^b	\$45,092
Nirsevimab cost per \$200/dose (1st season)c	\$31,869

a Base-case nirsevimab cost \$300 per dose, immunization is for only the 1st season

b LRTI=Lower respiratory tract infection, URTI= Upper respiratory tract infection

c Cost per QALY saved estimated by varying nirsevimab cost per dose from \$200 (low) to \$500 (high), immunization is for only the 1st season

Limitations

- Factors not considered that may result in overestimating the ICER (underestimating the cost-effectiveness) of nirsevimab immunization
 - In base-case: both models assumed
 - No protection against URTI
 - No protection against asymptomatic/unattended LRTI
 - Neither model included RSV-related costs incurred after discharge from an RSV-associated hospitalization or emergency department visit:
 - Productivity losses incurred by caregivers after discharge
 - Both models assumed no indirect effects of nirsevimab immunization (i.e., no protection against RSV transmission)

Conclusion

- Differences in key inputs among Sanofi and UM-CDC models explain differences in results:
 - Nirsevimab cost per dose
 - Seasonality and intervention period
 - Duration of nirservimab efficacy
 - Hospitalization rates
 - Medical costs

Base-case in both models:

- Nirsevimab would significantly reduce RSV disease burden in infants
 - Data from clinical trials support impact estimates on disease reduction
- Economic value of using nirsevimab in infants could be cost-effective or costly
 - Reasonable nirsevimab price and duration of protection combined with careful design of seasonal interventions would determine the *cost-effectiveness* value of routine prophylaxis among infants ≤7 months of age entering their first RSV season, and those born during the RSV season

Acknowledgements

From NCIRD/CDC

- Jamison Pike
- Jefferson Jones
- Meredith McMorrow
- Mila M. Prill
- Katherine E. Fleming-Dutra
- Michael Melgar

Also:

Maternal/Pediatric RSV working group members

End of Summary

For more information, contact CDC 1-800-CDC-INFO (232-4636)
TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Leftovers:

Note:

Economic evaluation:

Incremental cost-effectiveness ratio (ICER):

$$ICER = \frac{C_{imm} - TC_{saved}}{HO_{soc} - HO_{imm}}$$

Where:

- C_{imm} = Cost of intervention (nirsevimab program costs)
- TC_{saved} = Total savings (difference in RSV disease costs under Standard of care vs. nirsevimab immunization)
- HO_{imm} = Health outcome of immunization (ex., QALYs)
- HO_{soc} = Health outcome of Standard of Care (ex., QALYs)

Both Cost and QALYs are discounted using:

- t = time in months/years after immunization (<math>t=0, 1, 2, ..., T)
- r = discount rate (3%)
- T = Analytical horizon (age-specific, in years)

Number needed to immunize (NNI) ratio:

$$NNI = \frac{\# Immunized}{\# HO_{saved}}$$

Where:

- # Immunized = number of individuals immunized against RSV during the time frame of the intervention
- #HO_{saved} = Number of health outcomes saved or prevented with immunization, ex.,
 - RSV cases saved.
 - RSV-outpatient visits prevented,
 - RSV-hospitalizations prevented,
 - lives saved